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Abstract. We derive model-independent constraints on four-fermion contact interaction-type dynamics
from the published preliminary LEP2 experimental data on e+e− annihilation into µ+µ− and τ+τ− pairs,
measured at different energies between 130 and 207 GeV. The basic observables are chosen to be the total
cross section and the forward–backward asymmetry, and the analysis realistically takes into account data
uncertainties and correlations among measurements at the various energies. The combination of data from
different energy points plays an important role in the determination of regions allowed for the contact
interaction coupling constants. In contrast to the more common one-parameter analyses, we only obtain
constraints on pairs of parameters rather than limits on individual ones.

1 Introduction

Many standard model extensions envisage a dynamics act-
ing at one (or more) large mass scales Λ � MW , such that
the relevant states exchanged among quarks and leptons,
having a mass proportional to Λ, are so heavy that they
could not be directly produced at accelerator energies.
The most familiar case is represented by quark and lep-
ton composite models [1,2], but there are numerous other
examples. However, such new interactions could mani-
fest themselves by indirect, virtual, effects represented by
deviations of the measured observables from the stan-
dard model (SM) predictions. If some deviations were ef-
fectively observed experimentally to a given significance
level, one could try to derive from the data numerical in-
formation on the parameters (masses and coupling con-
stants) of the non-standard models and, eventually, to se-
lect the viable one. In the case where, instead, no deviation
from the SM predictions were observed within the exper-
imental accuracy, one can set numerical bounds and/or
constraints on the parameters characterizing the new in-
teractions and, in particular, on the relevant mass scales
Λ. This information should also be of phenomenological
interest, in the exploration of non-standard interactions.

In the spirit of “effective” theories, exchanges of very
heavy objects in reactions of quarks and leptons can be
parameterized by a contact interaction, representing the
“low energy” expansion of the transition amplitude to
leading order in the small ratio

√
s/Λ (

√
s being the c.m.

energy). The explicit form of such contact interaction La-

grangian (CI) depends on the particles participating in
the reaction under consideration. Specifically, we consider
here the electron–positron annihilation:

e+ + e− → f + f̄ , (1)

with f = µ and τ , and the relevant precision data at LEP2
for 130 <

√
s < 207 GeV, published in [3], where the re-

sults of the four experimental collaborations are combined.
Such high precision data can be regarded as a powerful
tool to severely test manifestations of non-standard inter-
actions through deviations from the SM predictions. In
particular, we are interested in deriving, from those data,
constraints on the e e f f contact interaction Lagrangian
[2]:

L =
∑
αβ

g2
eff εαβ (ēαγµeα)

(
f̄βγ

µfβ
)
, (2)

where α, β = L, R denote left- or right-handed fermion he-
licities, and the parameters εαβ specify the chiral structure
of individual interactions and determine the size of the de-
viations from the SM predictions. One can introduce the
previously mentioned large mass scales by |εαβ | = 1/Λ2

αβ ,
and conventionally fixing g2

eff/4π = 1 as a reminder that,
as a compositeness remnant force, this interaction would
become strong at

√
s ∼ Λαβ . However, as remarked above,

more generally the scales Λαβ define a standard to com-
pare the sensitivity of measurements to the various kinds
of new interactions; see, e.g., [4,5].
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In practice, the situation is complicated by the fact
that, for a given fermion flavor f , (2) defines four individ-
ual and independent models (basically, the combinations
of the four chiralities α, β through the ε) and, in princi-
ple, the general contact interaction could be any linear
combination of these models. Thus, the aforementioned
deviations of the cross section from the SM predictions
may simultaneously depend on all four-fermion effective
couplings and, if only one value of the c.m. energy were
available, the straightforward comparison of deviations
and experimental uncertainty could produce only numer-
ical correlations among the different CI couplings, rather
than separate, and restricted, allowed regions for these
parameters in the parameter space around the SM limit
εαβ = 0. Moreover, negative interference of CI and SM
amplitudes in the cross section might considerably weaken
the bounds.

The simplest and commonly adopted procedure con-
sists in assuming non-zero values for just one of the εαβ
at a time, and in constraining it to a finite interval by
essentially a χ2 fit analysis of the measured cross sections
and forward–backward asymmetries, while all the other
parameters are set equal to zero [4–6]. In this way, only
tests of specific models can be performed.

On the other hand, it would be desirable to perform
a more general kind of analysis of the data, that simulta-
neously includes all terms of (2) as free, potentially non-
vanishing independent parameters and, at the same time,
allows one to disentangle their contributions to the basic
observables in order to derive separate constraints within
finite regions around the SM limit.

In cases where only one value for the c.m. energy is
available, such as for the planned e+e− Linear Collider
[7], a solution is represented by the initial electron beam’s
longitudinal polarization, that would enable to experimen-
tally extract the individual helicity amplitudes of process
(1), by definition directly related to the individual e e f f
contact couplings εαβ [8,9].

Such a procedure cannot be applied to the data from
LEP, with unpolarized electron and positron beams. How-
ever, in this case, the cross sections of processes (1) are
measured at LEP2 over a range of

√
s values wide enough

that the energy dependence of the deviations, entirely de-
termined by well-known SM parameters, can be exploited
to restrict the bounds to limited regions in the CI param-
eter space, and in this way to perform an analysis of the
new interaction, model-independent in the sense indicated
above. This observation was used for a global analysis of
data at the energies of LEP1, LEP2 and TRISTAN in [10].
The analysis presented here uses exclusively the most re-
cent higher statistics LEP2 data, combines the two chan-
nels µ+µ− and τ+τ− and the results of the four experi-
ments, and accounts for, among other things, the corre-
lations among the measurements at the different energy
points. The basic observables will be the “conventional”
ones, namely, the integrated cross section σ(s) and the
forward–backward asymmetry AFB(s), whose experimen-
tal values are tabulated in [3].

Specifically, in Sect. 2 we will give the basic defini-
tion of helicity amplitudes and the formulae relevant to σ
and AFB for the processes of interest here, and in Sect. 3
we shall present the model-independent analysis of LEP2
data and the resulting constraints on CI couplings. Fi-
nally, Sect. 4 will be devoted to some concluding remarks
and an application of the method to a model example.

2 Cross section and helicity amplitudes

Limiting ourselves to the cases f = µ, τ and neglecting
all fermion masses with respect to

√
s, and taking into

account the Born γ- and Z-exchanges in the s-channel
plus the contact interaction term (2), the differential cross
section of process (1) reads [11]

dσ

d cos θ
=

3
8
[
(1 + cos θ)2σ+ + (1 − cos θ)2σ−

]
, (3)

where θ is the angle between the incoming electron and
the outgoing fermion in the c.m. frame. In terms of helicity
cross sections, σαβ with α, β = L, R:

σ+ =
1
4

(σLL + σRR) , (4)

σ− =
1
4

(σLR + σRL) . (5)

In (4) and (5)
σαβ = σpt|Mαβ |2, (6)

where σpt ≡ σ(e+e− → γ∗ → l+l−) = 4πα2
e.m./3s (for

quark–antiquark production a color factor NC � 3(1 +
αs/π) would be needed). The helicity amplitudes Mαβ

can be written as

Mαβ = QeQf + geα gfβ χZ +
s

αe.m.
εαβ , (7)

where χZ = s/(s − M2
Z + iMZΓZ) is the Z propagator;

gfL = (If3L − Qfs
2
W)/sWcW and gfR = −Qfs

2
W/sWcW are

the SM left- and right-handed fermion couplings of the Z
with s2

W = 1 − c2
W ≡ sin2 θW; Qe = Qf = −1 are the

fermion electric charges.
The measured observables σ and AFB are given by the

relations:

σ =
∫ 1

−1

dσ

d cos θ
d cos θ =

1
4

[(σLL + σRR) + (σLR + σRL)] ,

(8)
and

σFB ≡ σ AFB =
(∫ 1

0
−
∫ 0

−1

)
dσ

d cos θ
d cos θ (9)

=
3
16

[(σLL + σRR) − (σLR + σRL)] .

Finally, their relation to σ± is given by

σ± =
σ

2

(
1 ± 4

3
AFB

)
. (10)
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Table 1. Approximate average integrated luminosity per experiment and nominal center-
of mass energies collected during LEP2 operations [3]

ECM (GeV) 130 136 161 172 183 189 192 196 200 202 205 207
Lint (pb−1) 3 3 10 10 50 170 30 80 80 40 80 140

Taking (7) into account, (8) and (9) show that σ and
σFB (or AFB) simultaneously depend on all four contact
interaction couplings, and therefore by themselves do not
allow a model-independent analysis, but only the sim-
plified one-parameter fit of individual models. However,
σ and σFB depend on the two combinations of helicity
cross sections (σLL + σRR) and (σLR + σRL). Accordingly,
a combined analysis of σ and σFB enables to separately
constrain the pairs of parameters (εLL, εRR) and (εLR,
εRL). Moreover, the combination of experimental data on
σ and σFB at different values of the c.m. energy allows to
further restrict such separate bounds in a model-indepen-
dent way.

To clarify this statement and intuitively show by a
simplified example the role of the different energy points
in improving the constraints, assuming that no deviation
from the SM is observed within the experimental accura-
cies, constraints on the contact interaction couplings εαβ
can be derived from the system of two inequalities:

|σSM+CI − σSM| < δσ, (11)

|ASM+CI
FB − ASM

FB | < δAFB, (12)

where δσ and δAFB represent the experimental uncertain-
ties on these observables. Taking (4) and (5) into account,
the deviations from the SM predictions in the left-hand
sides of (11) and (12) can be written as

σSM+CI − σSM =
1
4

[
(∆σLL + ∆σRR)

+ (∆σLR + ∆σRL)
]
, (13)

ASM+CI
FB − ASM

FB =
3

16 σSM

[(
1 − 4

3
ASM

FB

)
× (∆σLL + ∆σRR)

−
(

1 +
4
3
ASM

FB

)
(∆σLR + ∆σRL)

]
, (14)

where ∆σαβ = σSM+CI
αβ − σSM

αβ .
From (11)–(14) one can obtain constraints on the εαβ .

Specifically, the areas allowed to the values of the pa-
rameters are enclosed by concentric circles in the planes
(εLL, εRR) and (εLR, εRL). For example, the domain al-
lowed to the pair (εLL, εRR) is delimited by the circular
contours:(

εLL +
αe.m.

s
MSM

LL

)2
+
(
εRR +

αe.m.

s
MSM

RR

)2
=R2

±, (15)

where

R2
± =

(αe.m.

s
MSM

LL

)2
+
(αe.m.

s
MSM

RR

)2
± κ2, (16)

and
κ2 =

(αe.m.

s

)2 4
σpt

δσ+. (17)

In the right-hand side of (17), δσ+ must be expressed in
terms of the experimental uncertainties δσ and δAFB

1,
and a color factor 1/NC is needed in the case of quark–
antiquark production. These relations show that both the
center and the radii of the circles R± are determined by
the values of the SM helicity amplitudes and depend on
energy, while the width of the allowed area is determined
by the experimental uncertainty of the observables. There-
fore, in principle, the combination of two (or more) such al-
lowed regions corresponding to different energies can lead
to a reduction of the allowed region and, ultimately, to
model-independent bounds on the contact interaction cou-
pling constants.

It should be stressed that, while the observables are
given by two sums of helicity cross sections, σLL + σRR
and σLR + σRL, it does not follow that one can only ob-
tain constraints on the corresponding sums of parameters,
εLL+εRR and εLR+εRL. There is indeed a small, but finite,
sensitivity to the individual parameters. This is due to ef-
fects proportional to squares of the ε parameters, together
with the small difference between left- and right-handed
couplings of the standard model, |g�L| �= |g�R|.

3 Data fitting and derivation of constraints

Recently, the ff̄ Subgroup of LEPEWWG presented pre-
liminary combined results of measurements of the four
LEP collaborations using experimental data from the full
LEP2 available data set at energies from 130 GeV up to
207 GeV for the annihilation processes e+e− → ff̄ [3]. In
particular, for lepton final states f = µ and τ , the set of
the average cross sections σµµ, σττ and forward–backward
asymmetries Aµµ

FB, Aττ
FB and their experimental errors have

been given for the twelve energy points listed in Table 1.
The data fitting procedure used is based on the method

of least squares. We introduce a χ2 function, which may
be written in the following matrix form:

χ2(ε) = (OLEP2 −OTH(ε))TV −1(OLEP2 −OTH(ε)), (18)

where ε = (εRR, εLL, εRL, εLR) is the vector of CI param-
eters; OLEP2 is the vector of values of observables mea-
sured at LEP2 and OTH is the vector of their theoretical
predictions; finally, V is the covariance matrix of the ex-
perimental uncertainties.

1 While σ+ and σ−, as shown in (4) and (5), are the most
natural observables, we use instead σ and AFB for our analysis,
since the data are tabulated (with errors) for these observables
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Fig. 1. Allowed areas at 95% C.L.
on leptonic contact interaction pa-
rameters in the planes (εLL, εRR)
and (εLR, εRL), obtained as projec-
tions of the four-dimensional con-
fidence hypervolume on the rele-
vant plane after minimization in
the two remaining parameters. The
bars correspond to one-dimensional
model-dependent constraints as dis-
cussed in the text. The circles cor-
respond to the central values (see
Table 2)

The chosen set of observables, represented by the vec-
tor OLEP2, contains 48 elements (two kinds of observable
for two flavor channels and twelve energy points). The cor-
responding theoretical predictions, OTH, which depend on
the CI parameters ε and on radiative corrections via im-
proved Born SM amplitudes [12,13], have been evaluated
with mtop = 175 GeV and mH = 150 GeV. Initial- and
final-state radiation are taken into account by the program
ZFITTER [14] adapted to the present case of contact in-
teractions. The radiative corrections were applied using
definition “2” in [3]: namely, for dilepton events

√
s′ is

taken to be the bare invariant mass of the outgoing dilep-
ton pair (as opposed to that of the s-channel propagator),
the ISR-FSR photon interference is included and the sig-
nal is defined by the kinematical cut

√
s′ > 0.85

√
s. We

note that the improved Born amplitudes leave the form of
the previous equations for the cross sections, (3) and (10)
unaltered.

As regards the 48×48 symmetric covariance matrix V ,
the diagonal entries are the experimental uncertainties on
the observables, while the off-diagonal entries define the
correlations between the observables as well as among the
different energy points [3].

The least-square confidence region is determined by
the condition

χ2(ε) ≤ χ2
min + χ2

CL, (19)

where χ2
min is the minimum value of the function χ2(ε)

and χ2
CL = 9.49 for 95% CL and four degrees of freedom.

The procedure of minimization χ2(ε) is performed using
the program package MINUIT [15].

Combining the µ and τ data, we show in Table 2 the
components of the central value ε0 (over-all minimum of
χ2) and the global limits (intervals (εmin, εmax)) obtained
as projections of the confidence region on the correspond-
ing axes. These intervals should be considered as global,
model-independent, constraints on the CI parameters εαβ .
The χ2 in the model-independent fits amounted to 41.3,
for nd = 48 − 4 = 44 degrees of freedom: the probability
of this result is p = 0.411 [16]. For comparison, we give
the 95% CL one-parameter constraints on εαβ parameters
for the LL, RR, LR and RL contact interaction models.

Table 2. Central value ε0, global limits (allowed intervals)
obtained as projections of the 95% CL four-dimensional region
on the axes and 95% CL one-dimensional model-dependent
constraints on the CI parameters

Parameter Model independent Model dependent
(TeV−2) central value global limits

εLL 0.0085 (−0.175, 0.095) −0.0047+0.0071
−0.0071

εRR −0.0195 (−0.187, 0.111) −0.0052+0.0078
−0.0078

εLR 0.0120 (−0.225, 0.060) −0.0012+0.0111
−0.0116

εRL −0.0160 (−0.225, 0.060) −0.0012+0.0111
−0.0116

In Figs. 1 and 2 we show the contours which bound
the regions found as “projections” of the four-dimensional
confidence hypervolume determined by (19) on four of
the two-dimensional planes (LL–RR), (LR–RL), (LL–LR),
(LL–RL). The contours have been produced as the line
connecting all points of the plane where χ2 takes the value
χ2

min + χ2
CL after minimization on the two remaining free

parameters.
These figures show obvious symmetries. First of all,

in Fig. 1, where we display the allowed regions in the
(εLL, εRR) and (εLR, εRL) planes, there is an approximate
“reflection symmetry” between εLL ↔ εRR as well as be-
tween εLR ↔ εRL. As discussed in Sect. 2, the observables
depend on σLL + σRR and σLR + σRL, and to lowest order
in the ε, this translates into a dependence on εLL + εRR
and εLR + εRL. Thus, in this approximation, the allowed
regions would be bands at fixed εLL + εRR and εLR + εRL,
representing strong correlations between pairs of parame-
ters. The contributions of the second-order effects (in the
εαβ) delimit and curve these bands. In the case of the
εLR–εRL exclusion region, the radius of curvature, given
by an expression analogous to (16), is smaller than that
of the εLL–εRR exclusion region. This stronger bending
originates from the destructive versus constructive inter-
ference between photon- and Z-exchange: above the Z res-
onance, g�Lg�RχZ < 0, whereas (g�L)2χZ ≈ (g�R)2χZ > 0, so
|MSM

LR | = |MSM
RL | < |MSM

LL | ≈ |MSM
RR|.
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Fig. 2. The same as Fig. 1 for the
(εLL, εLR) and (εLL, εRL) planes

In Fig. 2, we show the analogous allowed regions in
the (εLL, εLR) and (εLL, εRL) planes. The allowed regions
in the (εRR, εLR) and (εRR, εRL) planes are very similar to
those of Fig. 2, and hence they are not shown.

In the figures, the constraints on the one-parameter
models LL, RR LR and RL (see Table 2) are represented
by bars. These correspond to one-dimensional model-
dependent constraints at 95% C.L. with χ2

CL = 3.84, ob-
tained by varying only one parameter at a time with the
remaining three set equal zero. The results in this case are
in full agreement with those obtained in [3].

Figure 2 is rather different from Fig. 1, but the two
panels are very similar among themselves. This is due to
the symmetric inputs, σLL +σRR and σLR +σRL, together
with the fact that the linear approximation, determined
by the interference between SM and CI couplings, pro-
vides a first, rough description of the bounds. Also, we
note that there is little correlation between these pairs of
parameters, and the allowed regions are simply

[εαβ < δ′] ∩ [εα′β′ < δ′] ∩ [ε2αβ + ε2α′β′ < δ2], (20)

where

δ′ � max(εLL) or max(εLR) or max(εRL), (21)

as determined from Fig. 1. Similarly,

δ2 =[max(εLL)]2 + {[max(εLR)]2 or [max(εRL)]2}, (22)

respectively, for the two panels. This simple shape is thus
due to the lack of correlations among the parameters
shown in Fig. 2.

4 Discussion

Our most important result is that if one does not restrict
the analysis to individual models, the bounds on the ε
are rather loose. In fact, any set of three of them (but
not all four, as is seen from the correlations in Fig. 1) can
be of the order of 0.2 TeV−2. This corresponds to a scale
Λ ∼ 2.2 TeV.

In the case of εLL and εRR, as discussed above, the
orientation of the “banana” in Fig. 1 implies that εLL and
εRR should roughly add to zero. Rather large deviations
from the SM are allowed, provided these parameters have
opposite signs. It should be noted that, if one assumes
universality, such opposite signs can never arise from the
low energy limit of a vector-particle exchange, irrespective
of the chiralities of the couplings. This may in part explain
why the present bounds are much looser than those of the
model-dependent analyses.

Also, it should be stressed that we do not assume full
lepton universality in this analysis. The muon and tau
data are combined, but the couplings to those currents are
not taken to be the same as the couplings to the electron of
the initial state. If lepton universality were imposed, one
would have the additional constraint εLR = εRL. Also, full
lepton universality would imply the product εLL εRR > 0,
and much of the allowed part of Fig. 1 would be excluded.
We note that there are models without flavor universality,
where εLL and εRR can have opposite signs (see, e.g. [17,
18]).

Up to this point, we have combined the muon and tau
data. It is also interesting to study these two data sets
separately. In Fig. 3 we show the contours which bound
the allowed regions in the (εLL, εRR) and (εLR, εRL) planes
for e+e− → τ+τ− (i.e., without using the muon data).
The general shapes of these allowed regions are rather
similar to those obtained from the combined data, but
they are significantly larger. The corresponding allowed
intervals of the ε parameters are given in Table 3, the
analogue of Table 2. The model-independent global limits,
for example, are looser than the combined muon and tau
analysis by up to 40%. The muon data alone give shapes
and allowed intervals quite similar to those in Fig. 3 and
Table 3, respectively, but narrower, essentially reflecting
the larger total error in the τ case.

In specific models, there are often constraints on these
deviations εαβ . For example, the Z ′ couplings of E6 models
lead to the constraints [19]:

Z ′
χ : εLR = εRL < 0, εLL = 9 εRR < 0, (23)

Z ′
ψ : εLR = εRL > 0, εLL = εRR < 0, (24)
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Fig. 3. Similar to Fig. 1, for tau
data only

Table 3. Similar to Table 2, for final-state τ pairs only

Parameter Model independent Model dependent
(TeV−2) central value global limits

εLL 0.0005 (−0.249, 0.113) −0.0032+0.0118
−0.0120

εRR −0.0125 (−0.258, 0.136) −0.0035+0.0129
−0.0131

εLR −0.016 (−0.273, 0.066) −0.0036+0.0188
−0.0202

εRL 0.0085 (−0.273, 0.066) −0.0036+0.0188
−0.0202

Z ′
η : εLR = εRL < 0, εLL =

1
4

εRR < 0. (25)

These signs are given by the signs of the couplings, to-
gether with the low energy limit of the propagator. The
leptonic data studied here lead to the MZ′ bounds: Z ′

χ:
600 GeV; Z ′

ψ: 330 GeV; Z ′
η: 340 GeV. The corresponding

bounds from all data [3] are 670 GeV, 480 GeV and
430 GeV, respectively.

Also, in the case of models with TeV-scale extra di-
mensions (with Kaluza–Klein excitations of the photon
and the Z), there are relations among the couplings [20]:
εLR = εRL < 0, and εLL = εRR/4s2

W � εRR < 0. For one
extra dimension, the bound on the compactification scale
[21] is Mc > 2.2 TeV.

As anticipated in the Introduction, we shall here con-
sider an example application, namely the effects of anoma-
lous gauge couplings [17] in the process (1). We note that
this model, which assumes universality, is characterized
by two parameters, fDB and fDW . The deviations (7) will
take the form

εLL = αe.m.

(
f̃DW
2s2

W
+

2f̃DB
c2
W

)
, εRR = αe.m.

8f̃DB
c2
W

,

εLR = εRL = αe.m.
4f̃DB
c2
W

, (26)

where f̃DB and f̃DW are related to fDB and fDW of [17]
by f̃ = f/m2

t . In this model, one has εLR = εRL, so any de-
viation would be restricted to lie along the dashed line in
Fig. 4, which shows a magnification of the allowed band in

Fig. 4. Similar to Fig. 1 (right panel), but magnification of the
region of small εLR and εRL, for χ2

CL = 5.99. The diagonal line
corresponds to the constraint of the anomalous gauge coupling
model

Fig. 1 (right panel) for χ2
CL = 5.99, corresponding to two

parameters. The intersections with the allowed bounds al-
low us to set a limit on |f̃DB | < 0.21 TeV−2. This also
amounts to a bound on εRR. From the analogue of Fig. 1
(left panel), corresponding to two parameters, one can ex-
tract bounds on εLL. Using (26), these can then be con-
verted to the bounds: −1.7 TeV−2 < f̃DW < 1.1 TeV−2.

We have not analyzed the quark data, which are of
poorer quality, due to the limited efficiency of b-tagging,
together with the problem of distinguishing b from b̄ jets
(see, however, [22]).

At the Linear Collider, where polarization would be
available, more observables can be studied, such as ALR
and ALR,FB. Thus, and because of the higher energy, dra-
matically tighter constraints are foreseen [9].
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